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Note 
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The stationary behaviour of a kinetic model close to that describing the real nitric acid- 
hydroxylamine reaction is studied under conditions of a continuously fed stirred tank reactor 
(c.s.t.r.). It is shown that this system has an interesting mathematical proper ty-  three positive 
stationary states in an unbounded region of the feed concentration. Two of these states are 
always locally asymptotically stable to perturbation while one is always unstable. 

Multistationarity, in which an open system has more than one stationary state, 
plays a substantial role in many areas of science [1,2a]. It is especially important in 
chemistry [3,4a] where its features can be studied relatively easily, but the results 
may help to understand even difficult biological phenomena too. 

While investigating the multistationary behaviour of the nitric acid-hydroxyla- 
mine reaction [5] we noticed that under conditions of a continuously fed stirred 
tank reactor (c.s.t.r.) the autocatalytic reaction scheme 

X + Y--+4Y, r=kxy/(f l+x),  
X + Y---~P, r=kcxy, (1) 

which is very close to that describing the real chemical system, yields an unbounded 
region of tristationarity in the stationary concentration vs. substrate feed concen- 
tration diagram of the system (X - substrate, Y - autocatalyst, r - reaction rate, x 
and y - concentrations, k, kc,/3 - constants). Since the best known forms of multi- 
stationarity, such as the simple S-shaped curves, mushrooms and isolas [2b,4b] are 
all confined to a finite interval of the bifurcation parameter, the above property of 
scheme (1) is surprising, and may be of interest to those studying the mathematical 
aspects of nonlinear behaviour in chemical kinetics. 

1 Permanent address: Institute of Physical Chemistry, Kossuth Lajos University, H-4010 Debrecen, 
Hungary. 
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The kinetic equat ions  of  the c.s.t.r, with react ions (1) can be wri t ten as 

k = - k x y / ( / 3  + x) - kcxy  + ko ()co - x ) ,  

= 3kxy / ( /3  + x) - kcxy  + ko(Yo - y ) ,  (2) 

where the new quantit ies,  k0, x0 and y0, denote  the reciprocal of  the m e a n  residence 
time, the feed concent ra t ion  of  species X and that  of  Y, respectively. In the stat ion- 
ary state the t ime derivatives in (2) vanish, and the s ta t ionary concent ra t ions  
(which will also be denoted  by x and y for simplicity) can be de te rmined  f rom the 
fol lowing equations:  

- k x y / ( / 3  + x) - kcxy  + ko(xo - x) = O, 

3kxy/ ( /3  + x) - kcxy  + ko(Yo - y) = O. 

(3a) 

(3b) 

In the rest of  the paper  we shall always assume that  all the parameters  in (3) are 
positive. The  interest ing s tat ionary behaviour  of  the system is fo rmula ted  mathe-  
mat ical ly  in the fol lowing theorem.  

T H E O R E M  1 

Let k, k0, kc,/3 be fixed parameters  that  satisfy the fol lowing relationships: 

4/3kc - ko~>O, (4a) 

9k 2 - 6k(/3kc + ko) + / 3 2 ~  - 2/3kok~ + ~ > 0 ,  (4b) 

6k - ko - 2flkc > 0. (4c) 

Then  (A) for some x; > 0 there exist three (xi, Yi): [x;, oo) --+ R 2 (i = 1, 2, 3) cont inu-  
ous funct ion  pairs such that  (xi, Yi) ( i  ----- 1, 2,  3) are solutions of  (3) in their  entire 
d o m a i n  of  defini t ion and 

O < y l ( x o ) < y 2 ( x o ) < y 3 ( x o )  and x 1 ( x o ) > x 2 ( x o ) > x 3 ( x o ) > O  (5) 

are valid; (B) Yl (Xo) --~ 0, Y2 (xo) ~ oo and Y3 (xo) --+ cx) as xo --+ oo; x2(xo) > x~ ° and  
x3 (xo) < x ~  for any )co > x~, where 

xO o 3k - ko - kc/3 ± [(3k - ko - kc/3) 2 - 4kokc/3] 1/2 
2,3 = 2 k  c ; (6) 

moreover  xl (xo) --~ oo, XE(Xo) --,'- x ~  and x3(xo) --," x ~  as x0 -+oo;  XlYl is bounded 
for x0 > x;. 

P r o o f  
After  some algebraic t ransformat ions  we obtain the fol lowing equat ions  f rom 

(3): 

x = k0(3x0 +Y0 - y ) / (4kcy  + 3k0), (7) 
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A y  3 + B y  2 + C y  + D = O , (8) 

where 

A = kokc(413ke - ko + 4k), 

B = 2kokexo  (2/3kc + ko - 6k) 

+ ko[/3kc(7ko - 4kcyo) - ~ + ko(3k + 2kcyo) - 4kkcyo] ,  

C = 3 ~ k ~  + ~xo(3/3kc + 3ko - 9 k -  2k~yo) 

+ k~o[/3(3ko - 7kcYo) + 2koYo - yo(3k + kcyo)], 

D = - 3k3oYoXo - k~yo(3/3 + Yo). (9) 

Any solution (x, y) of (3), for which 4 k e y  + 3k0 ¢ 0, satisfies the system (7)-(8), 
and any solution (x, y) of (7)-(8) with/3 + x ¢ 0 is that of (3). The fact that (7) 
provides x >  0 for any y > 0 solution of (8) follows from the following statements: 
(a) if y > 0 ,  13 + x -¢ 0 is valid for the x value defined by (7); (b) if ( x , y )  is a solution 
of (3), y > 0 implies x > 0. Statements (a) and (b) can be proved by direct calculation 
employing (3), (4a) and (7). Now we only need to show that (8) has three distinct 
positive y roots for sufficiently large values of x0. A lengthy but not difficult calcu- 
lation shows that the numerator of the discriminant A = -(27A2D 2 - 1 8 A B C D  
+ 4 A C  3 + 4 B 3 D  - B 2 C 2 ) / ( l O S A  4) [6a] is a sixth-order polynomial of x0, and it fol- 
lows from (4b) that the coefficient of the most rapidly increasing term x 6 is positive. 
Thus, because of A > 0, (8) will have [6a] three distinct real roots for sufficiently 
large values of x0. On the basis of Descartes' theorem [6b] the number of negative 
roots of(8) is less than or equal to the number of sign changes in the series 

- A , B , - C , D .  (10) 

The coefficients A, B, C, D in (9) are written as polynomials ofxo. While (4a) yields 
A > 0, (4c) shows that the leading term of B is negative. Thus, there are no sign 
changes in series (10) ifxo exceeds a given lower limit. Let x; > 0 be a value such that 
both A > 0  and sign(A) = sign(-B) = sign(C) = s ign(-D) are valid for x o > x ~ .  
Since D ¢ 0 excludes the zero roots, (8) will have three distinct positive roots for 
x0 > x;. By assigning these roots to the values of x0 we obtain three functions which, 
together with those defined by (7), satisfy relationships (5) in part (A) of the theo- 
rem. The continuity of these functions follows from that of the coefficients (9) and 
the implicit function theorem [6d]. 

(B) On the basis of Rolle's theorem [6c] the roots of the quadratic obtained by 
the differentiation of (8) with respect to y lie between those of (8). As both of these 
roots tend to positive infinity as x0 --~ 0% the two larger roots of (8) also do this. 
Introducing the variable z = 1/y into (8) and employing the same separation theo- 
rem it turns out that the smallest root of(8) tends to zero as x0 tends to positive infi- 
nity. This procedure also yields the estimate 
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3[Olx° 1 +  1 f o r x 0 > x ;  (11) xoyl (Xo) < C 

which, together with (7) and (9), shows that xlyl  is bounded for x0 >x; .  The limit 
xl (x0) ~ oe as x0 -+ oe readily follows from (7). Expressing x from (3b) it can be 
seen that x2(xo) and x3 (x0) tend to x~ or x~ as x0 tends to positive infinity. Creating 
a cubic for x from (3) and (7), and applying Rolle's theorem [6c] it turns out that 
there is a function of x0 that separates x2(xo) and x3(x0) and tends to 
( 3 k -  k o -  kcfl)/2kc as x0--*oe. A comparison with (6) shows that X2(X0) and 
x3 (x0) cannot tend to the same value as x0 ~ oe. The limits and relations concerning 
these quantities now readily follow from the continuity and the expression 

3kx koYo 
k c x -  ko - - - < 0 .  (12) 

f l + x  y 

Multistationarity is usually accompanied by multistability. In this case at least 
two stationary states are locally asymptotically stable, i.e. have domains of attrac- 
tion in the phase space of the dynamical system [2a,2b,4a,4b]. The stability and 
topological character of a given stationary state can frequently be assessed by the 
investigation of the appropriately linearised version of the original differential sys- 
tem, which describes the fate of small deviations from the stationary state [2c,4c]. 
In this context stability depends on the eigenvalues of the matrix of the linearized 
system. In the two-dimensional case these eigenvalues can be computed from the 
e q u a t i o n  A1,2 = [Tr + (Tr2-4A)l/2]/2, where Tr = all + a22, A = a l i a 2 2  - a12a21 
and aij are the elements of the Jacobi matrix of the original differential system eval- 
uated at the given stationary state. After some computation we obtain from (3) 
that 

.y ?0] 
T r =  [- 2 + k c y + k 0 + -  <0  and + 

q .  ,13  a=k0y0  kc+ + T4-;+kc 

If x0 is sufficiently large, A > 0  and Re()`l) <0, Re()`2) < 0  are valid for (xl,Yl) and 
(x3,Y3); these are locally asymptotically stable stationary points of the type of 
node or focus [2c,4c]. In the case of (x2, y2), ,4 < 0 is fulfilled for large values of x0; 
the eigenvalues )̀ 1 and ),2 being real and of opposite sign, this stationary state will 
be an unstable saddle point [2c,4c]. Thus, we have proved the following theorem 
which summarizes our results: 

THEOREM 2 
Under the conditions of theorem 1 there exists an x~>0 quantity such that 
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eq. (2) has three different positive stationary states for any x0 > x;. Two of  these 
stationary states are always locally asymptotically stable while one is always 
unstable. 

One parameter  set that satisfies the conditions of theorem 1 is k = 0.055, 
kc = 12.2,/co = 3.2 x 10 -3,/3 = Y0 = 10-4. 

According to our numerical calculations, the unbounded region of  multistatio- 
narity does not  disappear if spontaneous formation and decay of the autocatalyst 
(X--+ 3Y; r = kfx and Y - * Q ;  r = kdy) are added to model (1) with sufficiently 
small rate constants. On the other hand, numerical investigations have shown that  
the stationary concentration vs. k0 diagram of scheme (1) contains a finite interval 
oftristationarity.  
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